skip to main content


Search for: All records

Creators/Authors contains: "Eastes, R. W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The 2022 Tongan volcanic eruption released significant energy into the atmosphere. Tropospheric satellite images show that the eruption generated pressure waves that traveled globally. The Global Observation of the Limb and Disk (GOLD) mission observed significant wave‐like thermospheric temperature perturbations (>100 K) from 12 to 16 UT. These temperature perturbations' spatial curvatures and arrival times are initially similar to the tropospheric wave‐fronts but differ significantly with eastward propagation. The perturbations had a phase speed of ∼300–400 m/s and wavelengths greater than 2,400 km. Near‐concurrent Ionospheric Connection Explorer neutral wind measurements suggest that the eruption's effects reversed the direction of the prevailing thermospheric zonal winds around the perturbed regions. The eruption's global and whole atmospheric effects provide a unique opportunity to study how different atmospheric layers exchange energy and momentum during explosive events. GOLD's synoptic observations are uniquely positioned to study these effects in the middle thermosphere.

     
    more » « less
  2. Abstract

    Current and previous thermospheric remote sensing missions use N2Lyman‐Birge‐Hopfield (LBH) band dayglow emission measurements to retrieve line‐of‐sight thermospheric composition and temperature. The precision of thermospheric composition and temperature retrieved from observations depends on the uncertainty in the relative LBH vibrational populations. In the laboratory, electron impact induced LBH emission measurements have shown that the relative vibrational populations change with gas pressure. However, it is not fully understood how these populations change for dayglow observations where the emissions that contribute to the observations vary with solar illumination and line‐of‐sight geometry. We quantify the relative vibrational populations as a function of solar zenith angle (SZA) and tangent altitude using Global‐scale Observations of Limb and Disk mission's LBH dayglow observations. We find that, while some lower vibrational levels show potential enhancement with increasing pressure (decreasing altitude), in general, they do not change significantly with SZA or tangent altitude for dayglow observations. The vibrational populations can thus be assumed as fixed parameters when retrieving neutral disk temperatures from remotely sensed LBH dayglow observations.

     
    more » « less
  3. null (Ed.)
  4. Abstract

    This study investigates the underlying physics of equatorial plasma bubbles (EPBs) on 11 December 2019, under solar minimum conditions. The Global‐scale Observations of the Limb and Disk (GOLD) ultraviolet nightglow images exhibit a periodic distribution of reduced emissions related to EPBs. Remarkably, FORMOSAT‐7/COSMIC‐2 (F7/C2) observes a significant altitudinal difference of ~45 km in the bottomside ionosphere between two nearly collocated electron density profiles before the onset of EPBs, indicating the presence of an upwelling. Distinct ionospheric perturbations are also observed in F7/C2 and ground‐based Global Positioning System observations, suggesting that gravity waves may contribute to the upwelling. Simulations with SAMI3/ESF are further carried out to evaluate the upwelling growth and pre‐reversal enhancement (PRE) effect on EPB development. Simulations reveal that the crests of upwellings show a localized uplift of ~50 km, and EPBs only develop from the crest of upwellings. The uplift altitude of upwellings is comparable to the F7/C2 observations and the post‐sunset rise in moderate solar conditions. The polarization electric field (Ep) developed within the upwellings can drive verticalEp × Bdrifts of ~32–35 m/s, which are comparable to the PRE verticalE × Bdrifts. We find that the PRE alone cannot drive EPBs without upwelling growth, but it can facilitate the upwelling growth. Observations and simulations allow us to conclude that upwelling growth could play a vital role in the formation of EPBs.

     
    more » « less
  5. Abstract

    During geomagnetically quiet and solar minimum conditions, spatial variations of the early morning thermosphere‐ionosphere (TI) system are expected to be mainly governed by wave dynamics. To study the postmidnight dynamical coupling, we investigated the early morning equatorial ionization anomaly (EIA) using Global‐scale Observations of the Limb and Disk (GOLD) measurements of OI‐135.6 nm nightglow emission and global navigation satellite system (GNSS)‐based total electron content (TEC) maps. The EIA structures in the OI‐135.6 nm emission over the American landmass resemble, spatially and temporally, those observed in the GNSS‐TEC maps. The early morning EIA (EM‐EIA) crests are well separated in latitude and mostly located over the middle of South America during October–November. In February–April the crests are less separated in latitude and predominantly located over the west coast sector of South America. Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCMX) simulations with constant solar minimum and quiet‐geomagnetic conditions show that EM‐EIA can occur globally and shows properties similar to longitudinal Wave 4 pattern. Thus, we propose that EM‐EIA is driven by dynamical changes associated with the lower atmospheric waves.

     
    more » « less